If it's not what You are looking for type in the equation solver your own equation and let us solve it.
320x^2-36900x+200000=0
a = 320; b = -36900; c = +200000;
Δ = b2-4ac
Δ = -369002-4·320·200000
Δ = 1105610000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1105610000}=\sqrt{5290000*209}=\sqrt{5290000}*\sqrt{209}=2300\sqrt{209}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36900)-2300\sqrt{209}}{2*320}=\frac{36900-2300\sqrt{209}}{640} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36900)+2300\sqrt{209}}{2*320}=\frac{36900+2300\sqrt{209}}{640} $
| 3-p=p^2-3p+9 | | 5(9x-8)=-85 | | 5(9x-8)=-80 | | 2/3(3x+9)=1/4(2x+5) | | 5(9x-8)=-90 | | 5(9x-8)=-20 | | 9s+7s=32 | | 9s+7s=23 | | 3x+(x+9)=176 | | 5/6=35/n | | 5/2x+1/2x=5x+27/2+5/2x | | (3/2)+(2x/5)=7/10 | | 5x+3x-6=8x+2 | | -(3+5y)+5y=8 | | X^2-15x+62=0 | | x+18=7-(4x+9) | | 3r-21+40-r=38 | | 5x2-1=10 | | 0.4x=x-18 | | X-2(7x-11)=11 | | 8m/3=16 | | -8+8a=8(6a-6) | | 4x^2-11=97 | | 6-6x=7(-8+8x) | | 6x+6=12x-6 | | 23x+76=19x-116 | | 0.267(x=4) | | 5(b-7)=7b-29 | | 4x-40=7x(-2x+2) | | 8(3-m)-3=30-5m | | n+9=90 | | n+59=90 |